

INTERNET TECHNOLOGIES – CW2

CONFERENCE APP

Linus Herterich - B00400078

Pawel Karpinski - B00360376

TABLE OF CONTENTS

Introduction ... 4

Overview .. 4

Background .. 4

Data Sources... 4

Core Functions ... 5

Advertise .. 5

Register / Login .. 5

Ticket purchase .. 5

Booking workshops .. 6

User Dashboard .. 6

Advanced Functions ... 7

Register / Login Using Social Media ... 7

Admin Dashboard... 7

Access to live or recorded events .. 7

Translation and content updates ... 7

Data Protection .. 8

Implementation..10

User Interface ...10

Target group and design language ...10

Mobile presentation...10

The homepage..11

Workshops ...12

Talks..14

Tickets ..14

Checkout Pages ..15

Registration and Login ...16

Profile page ..17

Wireframe creation ..18

Frontend implementation ..18

Technology Stack..19

JavaScript..19

MERN Stack ..20

Node.JS ...21

MONGO DB ..23

Express.js ..23

REACT.js ..26

Data Organisation ..29

Hosting ...31

DEPLOYMENT ...31

Scalability ...32

Tracking and Statistics ..33

Conclusions ..33

Bibliography ...34

INTRODUCTION

Cinemas are in a crisis. Cinematography is booming nevertheless. This is because films are

independent of crises, such as the current Corona crisis. More and more streaming providers are on

the rise and services like "Netflix", "Amazon Prime Video" or "Disney+" are very successful. The

cinemas may be empty, but the living rooms are full and people are eager for new films and series.

In order for new films and series to be created in times like these, filmmakers need and want to

exchange ideas in order to stay networked as much as possible, to learn new things and to learn

from colleagues or companies.

In the past trimester, we have been working on what a platform could look like so that film

enthusiasts can also network and meet online within the context of a conference on

cinematography. This report explains which functions we thought about in detail and how we

implemented them in terms of design and technology.

OVERVIEW

BACKGROUND

CineCon 2021 is an International Cinematography online conference aimed for professional

cinematographers. It is great opportunity to meet and connect with all talented people in the

industry. Great talks and multiple workshops will expand arsenal of skills and broaden the creative

horizons to tackle approaching uncertain and challenging times.

Carefully selected list of speakers will guarantee quality and invaluable insights about the industry,

craft, and everchanging trends and technology.

DATA SOURCES

The data we mainly work with comes from the conference operators, the tutors of the workshops /

talk speakers, as well as input from the conference visitors. We store all of this data in our private

database, which can be filled by administrators using an API interface and can also be read by our

frontend.

Furthermore, we work with licensed API interfaces from third parties, which handle core

functionalities. For example, we have outsourced the entire payment logic to "Stripe" because it is

both easier and safer to leave such things to professional specialised companies. In addition, the

video streaming of talks and the operation of conference rooms is outsourced to professional

suppliers. There are costs for all these APIs, but we would recoup them with the ticket prices.

CORE FUNCTIONS

ADVERTISE

As the webapp is basically public, each page should be designed to appeal to the target audience

and promote the conference. Our content should be presented in such a way that it promotes new

and existing conference visitors.

REGISTER / LOGIN

Interested users should be able to create an account on the webapp by registering via email and a

password of their choice. Before doing so, they must accept the terms and conditions and privacy

policy. A confirmation link will then be sent to them automatically by e-mail, which they must click

on in order for the user account to be activated and ready for use.

Once the account is activated, a Log In is possible, which activates some functions on the website.

Only after the login it is possible to buy tickets, book workshops and mark events as favourites. A

personal user page can also only be accessed after logging in.

In addition to the user role, there is also an admin role, which allows administrators to create

workshops / talks in a backend dashboard and to manage users and ticket purchases. The admin

panel has not been implemented in the proof of concept yet. It is only possible to set up the role in

the database administration, which enables a visit to the "/admin" page.

TICKET PURCHASE

We have decided to use a three-tier ticket system. The tickets differ in the number of workshops a

conference participant can attend. The smallest and cheapest option contains 2 inclusive workshops,

whereas the middle one contains four and the most expensive eight. All talks are unlimited inclusive

for the user once any ticket has been purchased.

We have made this choice because cinematography is a very practical conference topic and there is

more to be gained from workshops than from simple talks. However, you can only benefit from

workshops if the number of participants is limited. This is also important for online conferences.

Therefore, the limited resource are workshops, which is why we have integrated them into the ticket

system.

Tickets can be booked directly on the website. The first requirement is a user account. As soon as

this exists and the user clicks on "Book Now" on the ticket page, he is forwarded to the payment

provider Stripe. Our backend creates a one-time checkout session for this, which contains the

desired ticket option.

The payment processing itself is handled by Stripe. To test it out, the following test credit cards can

be used for testing purposes:

NUMBER BRAND CVC DATE

4242424242424242 Visa Any 3 digits Any future date

4000056655665556 Visa (debit) Any 3 digits Any future date

5555555555554444 Mastercard Any 3 digits Any future date

2223003122003222 Mastercard (2-series) Any 3 digits Any future date

5200828282828210 Mastercard (debit) Any 3 digits Any future date

5105105105105100 Mastercard (prepaid) Any 3 digits Any future date

(source: https://stripe.com/docs/testing#cards)

After the payment has been processed, Stripe forwards the user either to a page that confirms the

success or failure of the payment. The ticket is then stored in the user's account and the user can

now enrol in a set number of workshops depending on the ticket.

BOOKING WORKSHOPS

The workshops are stored in the database and can be created and edited flexibly and frontend-

independently. Currently, this is only possible via the MongoDB backend. An admin interface for this

is still missing.

The workshops can be booked in the frontend by logged-in users (if there are still bookings left from

the ticket) or initially marked as favourites with a heart. The booked and favourite workshops can

then be found on the profile page.

Unfortunately, we have not quite finished the booking system, which is why it is currently only

possible to display the workshops from the database in the frontend, but not to book them with an

account. The display on the profile page is currently only static and has nothing to do with real

bookings or favourite markings.

USER DASHBOARD

Each user has their own dashboard where profile settings (unfortunately not implemented) as well

as workshop bookings and favourite events can be viewed. If an event is about to start, it is

highlighted and currently relevant information, such as the link to join the online conference, is

displayed.

https://stripe.com/docs/testing#cards

ADVANCED FUNCTIONS

The following features were all conceptualised during planning, but unfortunately did not make it

into proof of concept.

REGISTER / LOGIN USING SOCIAL MEDIA

The login does not only work via registered email, but can also be done via platforms such as Google,

Facebook or Apple. This would lower the entry barrier for many users to create an account on the

website.

ADMIN DASHBOARD

A central interface where the entire conference can be managed. Workshops, talks and their

speakers or tutors as well as users, their payments and bookings can be viewed and managed there.

Furthermore, the livestreams for the talks can be started centrally and forwarded to the interested

users by e-mail, and the workshops can be connected to conference platforms such as Microsoft

Teams.

More detailed statistics, such as the workload of the website and the number of clicks on the talks

and workshop visits, can also be viewed.

There is also a central place where notifications can be sent (either by push notification via the

browser, or by email).

Admins can also block users (by IP address or by login name only), reset their passwords or nominate

them as admins.

ACCESS TO LIVE OR RECORDED EVENTS

All talks have a direct connection to a streaming platform such as YouTube. However, the talks are

not publicly accessible on this platform, but only by users of the conference. The talks can be

accessed directly from the CineCon WebApp. Materials used in the talk (presentation slides or

scripts) are also available on the WebApp.

If a user has missed a livestream, it can be viewed directly on demand on the website.

Workshops are only available live, but they are also accessible via the WebApp itself. As soon as a

workshop is about to start, the link to join a conference system (Zoom, Hangouts, MS Teams, ...) is

available on the WebApp and is sent to all participants by e-mail. This is done automatically, without

the intervention of an administrator.

TRANSLATION AND CONTENT UPDATES

All texts and contents of the website can be translated and changed directly in the admin panel.

Everything can be edited without changing the code. This means that the WebApp is not only

suitable for CineCon 2021, but can also be used for any other conference.

This is already the case for the workshops. The basic workshop system is not bound to

cinematography, as the texts and images can be replaced with anything.

DATA PROTECTION

Authentication of the user in our conference app is managed in the backend by loginUser function

which checks email and password from request body and compare it with data stored in the db.

Entered password is compared with its hashed version stored in the db using bcrypt.compare()

method.

If password match then new token is generated (valid for 7 days) and user’s data is returned as a

json response to the client.

On the client response is handled by authenticate helper method, token is stored in the cookie and

user data is stored in the localStorage.

Authorisation is a level of privileges according to type of the user. In our project we have 2 types of

users: ‘user’ and ‘admin’ And depending of type one is able to access different parts of the

application. Component AdminRoute was created to check and allow access only for ‘admin’

members

Other security measures are hashing and salting passwords before storing them in the database. So

even admins don’t have access to user’s passwords.

OR F

IMPLEMENTATION

USER INTERFACE

TARGET GROUP AND DESIGN LANGUAGE

Before we started designing the interface, we thought about the target group we wanted to address.

Since we want to promote a conference about cinematography, the target group of the website

consists of people interested in cinema and moving images of any kind.

The aim is to reach beginners who want to enter the field with the help of the conference, as well as

professional business people and industry insiders. This balancing act between information for

beginners and information for professionals is reflected in both the content and the interface design

of the website.

Basically, we decided on a modern and consistent design that picks up on elements of material

design. As a primary colour we have chosen a turquoise (#007c7e). As a cool colour, this exudes

professionalism but also refreshment. As a conference, we want to present ourselves professionally,

as we want to address professionals in the industry and also convey professional information in the

conference. Nevertheless, we don't want it to look too boring, because the industry generally works

with imagery and has a good visual look. Thus, the green has a good influence on the website being

perceived as refreshing and new.

For the font, we decided on a sans-

serif typeface that radiates clarity

and cleanliness as well as

professionalism. We work with the

primary colour, kerning and font

weight for certain typefaces.

So that it does not become too text-heavy, we have always tried to insert pictures or illustrations in

appropriate places. It was also important to us to always use enough white space so that the page

does not appear too cluttered and confusing. Thematically related elements were either separated

as a section with their own background colour (usually nuances of the primary colour) or with card

elements from the material design.

MOBILE PRESENTATION

As this is an online conference that is best consumed via laptop, tablet or desktop PC, the

presentation of the web app was also designed for these device types first. Nevertheless, a mobile

version is possible without further difficulties. All elements can also be displayed very well on

smaller displays. However, due to time constraints, an optimised design specifically for smartphone

displays was not created.

Figure 1: Typefaces Design

THE HOMEPAGE

The homepage welcomes with a

large hero image in the primary

colour of the website showing a

film reel. The headline simply

shows what it is about and

directly presents the date of the

conference. The call-to-action

button immediately leads to the

ticket purchase.

Right after that, we want to

create a "WOW" effect by listing

the logos of the companies

participating in the conference.

Since these are leading industry

giants, we are positioning

ourselves to the visitor right

away as a website that has a name in the industry. So, we are not a niche conference, we are

relevant. This should be clear to the user here.

Immediately afterwards, this effect is repeated by highlighting 4 guest speakers of the conference

who have a name in the cinematography world. Not only CEOs nor only directors were picked

deliberately, so that one can see a wide range of offers directly on the homepage.

Then the visitor is addressed directly for the

first time and presented with 3 reasons why

he should attend the conference. The visitor's

gaze is first caught here by large icons. If he

wants to read more, he reads the reason and

if more reasons are needed, he can be

redirected to the "About" page via the "more

reasons" button.

All this was initially to attract new visitors to

the conference. Now follows an excerpt of

this year's event plan, which should convince

Figure 2: Homepage Hero Element

Figure 4: Listing participating companies

Figure 3: Highlighting guest speakers

Figure 5: Reasons for attending the conference

returning visitors to come to the 2021 conference. The two buttons "See all Talks/Workshops"

indirectly indicate that this is not the entire event plan, but only an excerpt. If someone wants to

find out more, he or she can click on one of the buttons here and land on the pages that provide the

entire event plan.

Figure 6: Event Schedule

WORKSHOPS

On this page, all workshops are presented in a visually appealing way in Material Design Cards. All

events are categorised into topics. These can be found on the bottom line of the workshop cards.

Buttons next to the sorting option can be used to select specific subject categories, which are then

presented at the bottom. Thus, a selection is possible for the user. This is quite important, as the

field of cinematography is very diverse and also contains many different professions, all of which are

distinct. We offer workshops

for different professions

here, so that the conference

is also suitable to be

attended by a wide range of

people. To the right of the

category filters there is also a Figure 7: Filter Options for Workshop Page

button which activates further filters. These are initially hidden. If they are shown, the events can be

filtered here only for certain days or by certain tutors.

The workshops cards themselves

contain a small picture to attract

attention, a title, a short

description and also information

about the tutor, the starting time

and the level of difficulty. Here

again we pick up beginners as well

as professionals, as it is clear that

there are both beginner events and

advanced events. The events can

be marked as favourites or opened

using the two buttons. The focus

button here is on the button that

opens the event to find out more

information and to book the event

there. The workshop cards also

show how many slots are still

available. This should show the

shortage of workshops and

encourage the viewer to buy his

ticket as soon as possible, because

otherwise his favourite workshop

might already be fully booked.

The detail page of the workshops

works as a modal (pop-up) and

contains the workshop information

in more detail. If the user is logged in, the event can be booked directly there if there are still

workshop bookings left from his ticket.

Figure 8: Workshop Card

Figure 9: Workshop Details (Modal)

TALKS

Similar to the workshops, the talks are also designed with material design cards on which the short

description and the categories can be found. As the focus of the conference is more on the

workshops, there are not so many Talks, which makes filtering not as relevant as with the

workshops. Due to a lack of time, we did not continue working on the design for the Talks page after

the first conception. The page was then also not included in the app.

TICKETS

The ticket page focuses primarily on

highlighting the differences between the

individual tickets. Thus, the three ticket

options (Small, Medium, Large) are lined

up in an almost identical style, making it

as easy as possible to compare the tickets.

However, there is a visual focus on the

Medium ticket. This has the most

saturated colour and thus attracts

attention. Psychologically, the golden

mean is most likely to be chosen if there is

still a slim option that is not much cheaper but holds many fewer options. According to the motto "I

can afford the small surcharge". By contrast, the expensive ticket would be beyond the scope of the

Figure 10: Talks page - concept

Figure 11: Ticket comparison

normal user and the thought spreads "I don't need

that, it's too expensive and over the top".

Nevertheless, this option is probably booked by

enthusiasts who want to use the conference on all

trains.

At the bottom of the page is a FAQ section, which

also follows the card design of the entire website.

Questions that prevent the user from buying a ticket

should be solved directly so that nothing stands in

the way of the purchase.

CHECKOUT PAGES

After the transaction with our payment provider "Stripe" has been either successful or unsuccessful,

the user lands on one of the two pages:

Here we congratulate the user, reinforcing the feeling that they have made the right choice. He is

then asked to check his inbox to find out what happens next. It is important at this point that the

user is not lost as to what to do next, but is given information on what to do now.

Figure 12: FAQ Section

Figure 13: Successful Checkout

If something goes wrong during the checkout process at Stripe, the user is taken to a page that also

tells them what to do next. Either try again or report it to a contact person. This means that the

customer is not just told that something has gone wrong, but is immediately presented with a

possible solution.

REGISTRATION AND LOGIN

Figure 15: Registration Page

The registration and login page has been visually combined and can be switched by clicking a link

under the "Sign Up/In" button. The registration does not require a lot of information that could

otherwise discourage an interested visitor from registering. The page has been designed as clearly as

possible and the individual fields have been described with both labels and placeholders.

Figure 14: Failed Checkout

Figure 16: Sign In Page

PROFILE PAGE

Here the user is first greeted

personally by their first

name, which emphasises

that this is their own profile

page and not a public page.

If the user already has a

ticket, details about it will

be posted here.

Further down, the events booked by the user are listed in a more abbreviated form than on the

workshop page. Here it is more about an overview of the upcoming dates than about the details of

the workshops. Nevertheless, the details can be called up via a button, or the event can be

cancelled. On the right side you will find the favourite events in an even smaller format.

Figure 17: Profile - Welcome Element

Figure 18: Booked Events & Favourite Events

WIREFRAME CREATION

After we were clear about the features and had

clarified the basic style of the webapp, we

created the wireframes in Adobe XD. For this

purpose, we used a shared document, which

can also be viewed online here:

https://xd.adobe.com/view/b9414fb9-a536-

4020-86bb-320ed6892acb-ec12/grid?grid

FRONTEND IMPLEMENTATION

We implemented the frontend with the help of the CSS library Bootstrap (version 4.5). Since we

chose React as our frontend framework, we implemented Bootstrap with the help of the "React-

Bootstrap" rebuild. This transforms the most common Bootstrap components into native HTML

elements.

For example, the following native HTML-Bootstrap Code:

<div class="card">

 <div class="card-body">

 This is some text within a card body.

 </div>

</div>

Will be in Boostrap-React:

<Card>

 <Card.Body>

 This is some text within a card body.

 </Card.Body >

</Card>

This makes the entire code much easier to read for the components (or JSx) and integrates well into

the usual React syntax.

Figure 19: Wireframing in Adobe XD

https://xd.adobe.com/view/b9414fb9-a536-4020-86bb-320ed6892acb-ec12/grid?grid
https://xd.adobe.com/view/b9414fb9-a536-4020-86bb-320ed6892acb-ec12/grid?grid

TECHNOLOGY STACK

JAVASCRIPT

For the application technology stack, we decided to focus on one programming language – JavaScript.

Debuted in 1995 with Netscape Navigator 2 web browser, created to add some life into mostly static

and dull pages. After years of development and improvements mostly introduced in ECMAScript6

(ES6) update JavaScript became fully grown language able to create sophisticated applications. From

beautiful, interactive, and dynamic websites, mobile or desktop applications to Internet of Things (IoT)

devices.

JavaScript takes the first spot on the popularity charts several years in the row. It is popular choice

because it can be utilised on both ‘sides’ of the application – client side (frontend) for creating user

interfaces and server side (backend) thanks to Node.js (runtime environment for JS outside the

browser). There are many open-source, free libraries and frameworks which can shorten the

development time and therefore save money for the companies. There are whole stacks build entirely

on JS technologies used for development, and the most popular are: MERN, MEAN, MEVN. As well

front-end frameworks and libraries like React, Angular, Vue which can work wit any backend

technology (.NET, Java, PHP, Ruby).

Programming Language Popularity 2015-2019

Source: https://codinginfinite.com/top-programming-languages-2020-stats-surveys/

https://codinginfinite.com/top-programming-languages-2020-stats-surveys/

Programming, Scripting, markup languages popularity 2020 (stackoverflow survey)

Source: https://insights.stackoverflow.com/survey/2020#most-popular-technologies

MERN STACK

As above charts show JavaScript is still relevant and popular choice for developers in 2020, therefore

we tried to implement MERN stack – MongoDB for database, Express.js for HTTP server, React.js

library for user-interface and node.js as runtime and development environment. It is great example

of “JavaScript everywhere” paradigm - Combining web application development around one

programming language. (J., 2013)

Source: https://www.bocasay.com/how-does-the-mern-stack-work/

https://insights.stackoverflow.com/survey/2020#most-popular-technologies

NODE.JS

Node.js allows to execute JacaScript code outside the web browser, it is a runtime open-source,

cross-platform environment built on Goggle’s V8 engine. Created by Rayan Dahl in 2009 and still in

development (latest version is 15.3 – 24.11.20) let developers create command line tools and server-

side scripts using JavaScript. Node’s reacts and consume events (event – driven architecture),

processes asynchronous input / output and can run no blocking code – able to run next tasks

without finishing previous (fetching, data, API requests). ‘Node’s multitasking is achieved by event-

loop, it processes events from the queue by running callbacks on those events. (Subramanian, 2019)

Node Event loop

Source: (Wilson, 2018)

There are several node packages used in our application

they are stored in node_modules folder. List is available in

package.json file that contain all important information

about the project, node scripts which can start backend or

client or both servers and script used for the deployment

of the application to Heroku hosting. List of dependencies

(node packages): used:

Package Name

dependencies

Function

@sengrid/mail Mail Service for the SendGrid v3 Web Api. Sendgrid service

is used to send activation link for the registered user. Link is

active only for 10minutes. It is use as a precaution for mass

registering of fake accounts.

Bcryptjs Used for hashing user passwords stored in the database.

Body-parser Parse incoming request bodies before handlers

Colors Add colours to command line messages for better
development experience

Cors Middleware that enables CORS (Cross-origin resource
sharing). CORS is a mechanism that allows restricted
resources on a web page to be requested from another
domain (outside the original domain)

Dotenv Used for loading environmental variables (usually sensitive
data are kept there) stored in .env file

Express Web application framework

Express-async-handler Handling errors inside of express async routes

Express-jwt Express middleware for validating JSON Web Tokens
through jsonwebtoken module

Jsonwebtoken JSON Web tokens handling signing and verification
Express-validator Express middleware for validator.js library which validates

and sanitizes strings

Mongoose MongoDB object modelling tool designed to work in
asynchronous environment

Morgan HTTP request logger middleware useful during
development

Path Used for handling and transforming file paths

Stripe Node library for Stripe API (secure payments)
Concurrently Dev dependency used to run multiple commands at the

same time. Used in development to start server and client
with one command

Nodemon Used in development restarts node file when detecting any
changes that has been made.

MONGO DB

MongoDB is a NoSQL database with flexible schema and JSON-based query language. It often called document

database. Opposing to traditional relational database where we have tables with rows and columns MongoDB

has collections of documents which are just json objects.

We’re using MongoDB Atlas global cloud database hosted by Amazon Web Services which guarantee

availability, scalability and compliance with very demanding security and privacy standards. DB Compass is

used as a graphical user interface for MongoDB and it let view, edit and analyse collections without knowing of

query syntax, besides it can be also used to optimise query performance, manage indexes, and document

validation.

EXPRESS.JS

According to developers Express.js is a “fast, unopinionated, minimalist, web framework for

Node.js”. (OpenJS Foundation, 2020) It vastly reduce time and code needed to create HTTP server. It

handles requests and routes and utilises middleware functionality (enabling components to work

together).

In our conference app backend code is contained in server.js, app is an express() package and

app.use incorporates any middleware we want to use with express (imported routes for example)

authRoutes file contain all routes for HTTP request and middleware methods for validation and

handle database queries.

authController file contain methods used by router as a middleware. There is example of signing up

new user using SendGrid, a Twilio service for email delivery. This is used for sending activation link

for the newly registered users, if user won’t respond in 15 minutes link will expire and account wont

be stored in the database. This is use to prevent registering fake users and large scale signing by

bots.

User.findOne({email}) is a mongoose method to find data by entered parameter. We checking for

existing emails in the database is email is already registered then error message is send back to

client if no then new token is created for email activation (const token = jwt.sign()). Then token is

send as a part of the link for registered user’s email. Message is displayed back in the client that

there is 15 minutes to activate an account.

Controllers use Models which are responsible for creating and

reading documents (instance of a model) from MongoDB

database. Mongoose model is a wrapper on the mongoose

Schema which defines the structure of the document, default

values and validators. Model provides the interface to the

database queries and CRUD operations.

REACT.JS

React is a JavaScript library for building user interfaces created by developers behind Facebook in

2013. Still in development (latest version 17 released in 10/20). ‘React’s declarative and modular

nature makes it easy for developers to create and maintain reusable, interactive, and complex user

interfaces.’ (Hoque, 2020). React is a great choice when comes to modularisation and reusability of

the UI components. JSX – JavaScript XML allows to create HTML elements and render it the DOM

without need of createElement() and appendChild() methods. React code without JSX become hard

to read when number of nested elements grow, therefore JSX is a ‘syntactic sugar for the

React.createElement(, component, props, …children) function.’ (reactjs.org, 2020)

React frontend application was created using CLI

tool create-react-app – which setups nice React

development environment without hassle of

configuring build tools (webpack, babel, etc.)

Some additional packages have been installed

to extends app functionality:

Package Name

dependencies

Function

@stripe/stripe-js Wraps global Stripe function Stripe.js as an ES module,

used for payment

Js-cookie JavaScript Api for handling cookies used for store user’s

authentication token information in the browser’s cookie

React-bootstrap Bootstrap 4 components built with React

React-router-bootstrap Integration between react Router and react-bootstrap

React-router-dom DOM bindings for react-router
React-toastify Used for notifications sent by server

Stripe Provides access to Stripe API from applications written in
server-side JavaScript

Axios Promise based HTTP client for the browser

Our App consist of multiple components which are required by different views (pages) and

then everything is gathered inside App functional component which uses BrowserRouter

from react-router-dom to emulate behaviour of multiple pages even though this is a single

page application. Components <Header /> and <Footer /> are shared across whole

application and only content between them is changing depends of browser’s url address.

Example of single home page (view) which imports separate components to create whole

layout.

We use React hooks to use

state of the application

without need of writing a

class component. Most

popular hook used here are

useState() - for storing

authenticated user data and

dynamic render of the components depending of state’s information. Another popular hook

is useEffect() which is triggered every time components is rendered or some data in the

components change.

In the above’s example useEffect() is used to get data of the available workshop’s from the

MongoDB using axios. setWorkshops() method is used to store state (all fetched workshops

info) which can be passed as a props to <Workshop /> component.

Map() higher order array method is used to loop through workshops state and for each

found workshop render <Workshop /> component where rest of the data is passed as a

workshop prop. Below is <Workshop /> component which renders all workshop information

fetched from db like {workshop.date} or {workshop.title}.

DATA ORGANISATION

Plan for our conference app was to create 4 main collections where we can store

information about registered users, available tickets, workshops, and talks.

In addition to the main data, we would have smaller data sets that would be linked to the

main data by ID to avoid the redundancy of repeating strings. Categories (ID and Name) for

the Workshops:

- Tutors (ID, Name, Profession, Description, Image) for the Workshops

- WorkshopLevel (ID, Name) for the Workshops

- Speakers (ID, Name, Profession, Description, Image) for the Talks

- User Roles (ID, Name) for Users e.g.: admin, user

Due to time restrictions final proof of concept is lacking some of the data and

functionalities.

User document from users collection from MongoDB Compass:

Workshop document (workshops) collection from MongoDB Compass

Workshop model and Schema

We wanted to create relations between users and ticket types, workshops, available spaces.

Every user can book only allowed (by the ticket) number of workshops. Admin user could

create, edit, and delete Workshops and Talks

HOSTING

DEPLOYMENT

Conference App is going to be hosted in the cloud on Heroku – Platform as a Service (PaaS). It allows

deployment of the website just in couple steps. It is very good choice for students, start-ups and

quick deployment of prototypes or proof of concepts thanks to free testing accounts.

To deploy MERN stack application we need to install Heroku command line tool and:

• login to the Heroku service - heroku login,

• Create an App Heroku – heroku create cinecon2021

• Create git repository if not created before and add all required files – git add .

• Commit git commit -m “prepare for deployment”

• Add remote for Production app heroku git:remote -a cinecon2021

• Push git push heroku main

• Inside package.json we need add script: "heroku-postbuild":

"NPM_CONFIG_PRODUCTION=false npm install --prefix frontend && npm run build --prefix

frontend"

• And app is live here https://cinecon2021.herokuapp.com/

SCALABILITY

Currently, the proof of concept is hosted at Heroku.com and the associated database is hosted on a

server offered by MongoDB Atlas. Both services are only sufficient to demonstrate the basic

functionality of WebApps and are not sufficient to work with them on a professional level. This

brings us to the issue of scaling.

Since we are offering a conference web application, we have a strong sessional peak that we will feel

during the weekend of the conference and from about 2 months before. As the site operator, we can

easily choose the time of the greatest database load by selecting when tickets are available for

purchase and when workshops are bookable. These two functions will then generate the rush on our

server capacities.

For the rest of the year, the web app will probably only have representative functions and will hardly

have to carry any relevant server loads. Accordingly, we have to be flexible in order to be able to

absorb the peaks.

With Heroku, it is relatively easy to switch between the booked packages. Nevertheless, you need at

least the "Performance M" package to get autoscaling as well as dedicated server power. We would

recommend this for the time of heavy server load, as it may be necessary to quickly absorb strong

fluctuations while the conference is running and many users inform themselves about the following

event on the WebApp between events. The "Performance M" package costs from $250 per month.

However, this can go up into 4 digits depending on the amount of server power needed. For hosting

the backend and the API server, a vertical scaling strategy would be more appropriate, as it would

not be worth the effort to develop a parallel horizontal solution. For this, the conference will be

niche and thus small enough that such a strategy will not be necessary.

For the frontend and the database, however, it would be conceivable to also consider a horizontal

scaling strategy, as MongoDB is inherently well suited to being distributed on multiple servers. We

currently use the free MongoDB Atlas hosting, which is designed for a maximum storage capacity of

up to 5GB. For our test data of 3 users we used a capacity of 649B for the data and 72KB for the

indexes. For the 3 workshops we needed 9KB of data and 20KB of indexes. Extrapolating this, even

with 10,000 users and 500 workshops, we would be at a data capacity in the single-digit gigabyte

range. Of course, some data is still missing from our proof of concept, but presumably the data load

is not the problem, but rather the frequency of requests. This is clearly limited in our current plan,

since we do not get dedicated server performance, but are on a shared server. Therefore, we would

recommend moving to a server that offers permanent performance (MongoDB Atlas from $57). You

would also need to keep an eye on MongoDB's monitoring tools and, just before the conference,

consider whether it is worth switching to the horizontally scaled "Multi Region Dedicated Server"

package from MongoDB Atlas. If the users are scattered around the globe and the data load of the

normal dedicated server is not enough, this would be a convenient solution, as MongoDB is well

suited to be scaled horizontally. The price for this starts at just under 100$.

The frontend hosting is the most uncomplicated for the WebApp. It can be scaled horizontally on

physical and virtual servers without any problems, because only the already optimised HTML, JS and

CSS documents and a few optimised images have to be delivered to the clients. There is no server-

side rendering, which could place a large load on the frontend server. Ideally, it is also ensured here

that an automatically scaling option is booked from the time the workshop bookings are activated, in

order to have as few downtimes as possible. Particularly when booking workshops, it is sometimes

important to book quickly in order to get a place for your favourite workshop.

TRACKING AND STATISTICS

Monitoring your application can spot issues in advance and respond to incidents quickly. Heroku

offers several tools which allow to monitor all aspect of Heroku apps.

- Logging tools – collect and store application and database logs. Logs can be used during

incidents to help with identification of the problem and narrowing down options for fixing

the problem or logs can be good source of information after accident.

- Application performance monitoring (APM) display details about apps performance, can

help with identification of problematic parts which slow down the app.

- Error monitoring captures errors thrown by code of the application, dependencies, or

frameworks

- Platform monitoring tool can capture router metrics and present it in visual dashboard, very

efficient in monitoring of rapid increases in database load

- Heroku threshold alerting gives you notification when response times or error rate gets to

high. Heroku’s recommended response time is 500ms or less.

- Heroku Status provides updates on maintenance event and platform incidents. Maintenance

alerts allow to prepare in advance.

CONCLUSIONS

Our web app is on track to meet the requirements for a modern online conference system. We have

thought carefully in advance about the target group we want to address and how we can achieve the

best possible experience for them. By breaking it down into bookable workshops and the inclusive

talks, we have both created a reasonable pricing structure and ensured that conference participants

can specialise and get as much out of the conference as possible in small group sessions.

Technologically, we tried to build a web app that runs as fast as possible, is easily scalable and up to

date, is easily expandable due to its structure and has the potential to be used for other conferences

in the future.

In the end, due to personal setbacks, the proof of concept did not achieve the quality and

functionality we had originally envisaged. Nevertheless, it shows that our plan is working and that it

would have been possible to realise our goals if we had had more time.

BIBLIOGRAPHY

Hoque, S., 2020. Full-Stack React Projects. 2 ed. Birmingham: Packt Publishing.

J., C., 2013. Mobile App development, JavaScript everywhere and "the three amigos", New York: IBM.

OpenJS Foundation, 2020. Express. [Online]

Available at: https://expressjs.com/

[Accessed 3 12 2020].

reactjs.org, 2020. JSX in Depth. [Online]

Available at: https://reactjs.org/docs/jsx-in-depth.html

[Accessed 1 12 2020].

Subramanian, V., 2019. Pro MERN Stack. 2 ed. Bangalore: Apress.

V., S., 2019. Pro MERN stack. 2nd ed. Bangalore: Apress.

Wilson, J. R., 2018. Node.js 8 the Right Way. 1 ed. Raleigh: Andy Hunt - The Pragmatic Bookshelf.

	Introduction
	Overview
	Background
	Data Sources

	Core Functions
	Advertise
	Register / Login
	Ticket purchase
	Booking workshops
	User Dashboard

	Advanced Functions
	Register / Login Using Social Media
	Admin Dashboard
	Access to live or recorded events
	Translation and content updates

	Data Protection

	Implementation
	User Interface
	Target group and design language
	Mobile presentation
	The homepage
	Workshops
	Talks
	Tickets
	Checkout Pages
	Registration and Login
	Profile page
	Wireframe creation
	Frontend implementation

	Technology Stack
	JavaScript
	MERN Stack
	Node.JS
	MONGO DB
	Express.js
	REACT.js

	Data Organisation

	Hosting
	DEPLOYMENT
	Scalability
	Tracking and Statistics

	Conclusions
	Bibliography

